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Abstract—Natural Language Processing (NLP) has witnessed
an unprecedented surge in capabilities and applications, driven
by advancements in deep learning and transformer-based ar-
chitectures. This review presents a comprehensive synthesis of
twelve influential research contributions that span the breadth
of modern NLP, encompassing foundational models and emerg-
ing frontiers. We begin by examining core architectures such
as BERT, GPT, and T5, which have redefined pretraining,
fine-tuning, and transfer learning paradigms. The survey fur-
ther explores multilingual representation learning with XLM-
R, domain-specific adaptations like BioBERT for biomedical
text, and robust question answering systems exemplified by
UnifiedQA. Addressing critical needs in trust and usability, we
analyze explainability methods in NLP and ethical considerations
around model biases and responsible deployment. Additionally,
the paper reviews the rise of instruction-tuned and prompt-
based learning in models like FLAN-T5, sentiment and emo-
tion recognition from conversational data, empathetic response
generation, and multimodal learning through vision-language
models such as Flamingo. Collectively, these works highlight
the evolution of NLP from task-specific systems to general-
purpose language understanding frameworks, while underscoring
challenges related to interpretability, multilingual fairness, and
real-world reliability. This review aims to guide researchers and
practitioners toward deeper insights and future directions in
building inclusive, ethical, and high-performing NLP systems.

Index Terms—Natural Language Processing, Transformers,
BERT, GPT, T5, Multilingual NLP, Explainability, Sentiment
Analysis, Prompt Engineering, Multimodal Learning, Biomedical
Text Mining, NLP Ethics

|. INTRODUCTION

Natural Language Processing (NLP) has become an indis-
pensable branch of artificial intelligence, enabling machines
to comprehend, interpret, and generate human language at

scale. The field has rapidly evolved from rule-based systems
and statistical models to deep neural networks powered by
transformer architectures. Over the past few years, a series of
groundbreaking models—such as BERT, GPT, and T5—have
set new benchmarks in understanding and generating natural
language. These models not only improved performance across
a wide array of tasks but also introduced paradigm shifts
in how NLP problems are framed and solved, particularly
through transfer learning and pretraining on massive corpora.
This review synthesizes twelve highly impactful research
papers that collectively span the most critical domains of
modern NLP. The selected works represent innovations in lan-
guage modeling, multilingual representation learning, domain-
specific adaptations, explainability, ethical Al, and multimodal

learning. The evolution of autoregressive models like GPT-3
[2] and unified frameworks such as T5 [3] has demonstrated
the scalability and generalizability of transformer-based archi-
tectures. Simultaneously, multilingual models like XLM-R [4]
address the global applicability of NLP, while domain-specific
models such as BioBERT [8] cater to high-impact areas like
healthcare.

In addition to architectural advancements, the field is in-
creasingly addressing challenges such as transparency and fair-
ness. Recent surveys and toolkits have proposed explainable
NLP (XNLP) frameworks [5] to improve interpretability, while
ethical critiques have drawn attention to the risks associated
with data bias and large-scale deployment [12]. Emerging
trends such as instruction tuning [9], emotion-aware conversa-
tional agents [6], and vision-language models [10] are pushing
the boundaries of what language models can understand and
do.

By consolidating insights from these twelve works, this
review aims to provide a structured and critical understanding
of how modern NLP has evolved and where it is heading. Each
section of the paper focuses on one major topic, summarizing
the core contributions of a representative research work and
highlighting its impact on the field. The paper concludes by
outlining open challenges and future research directions nec-
essary to build inclusive, ethical, and adaptable NLP systems
for the next generation.

Il. BERT — BIDIRECTIONAL ENCODER REPRESENTATIONS
FROM TRANSFORMERS

The introduction of BERT (Bidirectional Encoder Repre-
sentations from Transformers) by Devlin et al. [1] marked
a breakthrough in Natural Language Processing by enabling
deep, bidirectional understanding of text. Prior models, includ-
ing GPT and ELMo, were constrained by unidirectional or
shallow context processing, whereas BERT leveraged a stack
of transformer encoders to jointly condition on both left and
right context in all layers. This structural innovation resulted
in state-of-the-art performance across a wide array of NLP
tasks.

BERT s pretrained using two self-supervised objectives:
Masked Language Modeling (MLM) and Next Sentence Pre-
diction (NSP). In MLM, random tokens in the input sequence
are masked, and the model is trained to predict these tokens
using the surrounding context. This strategy allows BERT to
capture semantic and syntactic relationships more effectively
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than left-to-right models. The NSP objective trains BERT
to determine whether a given sentence follows another in a
coherent discourse, which is particularly useful for tasks in-
volving sentence-level understanding such as natural language
inference (NLI) and question answering.

The architecture of BERT is based on the transformer
encoder introduced by Vaswani et al. [13], comprising multiple
layers of multi-head self-attention, feed-forward networks,
layer normalization, and residual connections. The original
BERT-base model includes 12 transformer layers, 768 hidden
units, and 12 attention heads, while BERT-large doubles
these parameters, significantly improving performance but also
increasing computational costs.

Fine-tuning is a key aspect of BERT’s versatility. After
pretraining, task-specific layers are added and the entire model
is trained end-to-end on datasets such as GLUE, SQUAD, and
CoLA. This has led to new state-of-the-art benchmarks in
sentence classification, named entity recognition, and semantic
similarity.

Following BERT’s success, several optimized variants
emerged. ROBERTa removed the NSP objective and trained
longer with more data, achieving even better performance. Dis-
tiIBERT compressed the model to reduce inference time, and
ALBERT introduced parameter sharing to reduce redundancy.
These innovations collectively contributed to the proliferation
of transformer-based architectures in both academic and in-
dustrial NLP pipelines.

Despite its achievements, BERT’s limitations include high
memory consumption, slow inference, and the absence of gen-
erative capabilities due to its encoder-only design. Nonethe-
less, its role in shaping modern NLP architectures remains
foundational.

Ill. GPT — GENERATIVE PRE-TRAINED TRANSFORMERS

The Generative Pre-trained Transformer (GPT) series, de-
veloped by OpenAl, introduced a paradigm shift in NLP by
demonstrating that large-scale, autoregressive language models
can generalize across tasks through simple prompting. The
original GPT was released in 2018, followed by GPT-2 in 2019
and the landmark GPT-3 in 2020, which contains 175 billion
parameters [2]. These models differ from BERT in architecture
and training objective—they use only the transformer decoder
stack and are trained with causal language modeling (CLM)
to predict the next token in a sequence.

Unlike BERT’s bidirectional attention, GPT employs unidi-
rectional (left-to-right) attention, which maintains the natural
flow of language and facilitates generation tasks such as story
writing, summarization, and dialogue modeling. The model
architecture consists of multiple layers of masked multi-head
self-attention, feed-forward layers, residual connections, and
layer normalization.

GPT-3’s most distinctive capability is few-shot and zero-
shot learning. By providing just a few task examples or de-
scriptions in the prompt, GPT-3 can perform tasks it has never
been explicitly trained on, such as translation, summarization,
or question answering. This behavior is largely attributed to
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Fig. 1. BERT architecture illustrating stacked bidirectional transformer
encoders with masked language modeling and next sentence prediction [1].

its massive parameter size and training on a broad dataset
comprising Common Crawl, WebText, books, and Wikipedia.

The training objective of GPT follows the standard autore-
gressive formula;

P(xX) = P (XX, x2, ..

t=1

This makes GPT particularly powerful for text generation
tasks where coherence and fluency over long passages are
critical. However, GPT models also face criticism for hallu-
cination, bias reproduction, and lack of transparency in their
decision-making.

With the introduction of GPT-4, OpenAl extended the GPT
family to multimodal inputs, enabling processing of both text
and image data. GPT-4 also shows improved factuality, safety,
and alignment, although details about its architecture and
training remain partially undisclosed.
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IV. TS5 — TEXT-TO-TEXT TRANSFER TRANSFORMER

The Text-to-Text Transfer Transformer (T5), introduced by
Raffel et al. [3], redefined the formulation of NLP problems
by casting all tasks—including classification, translation, sum-
marization, and question answering—into a text-to-text frame-
work. Unlike BERT, which uses only the encoder, or GPT,
which relies on the decoder, T5 adopts a full encoder-decoder
transformer architecture, similar to the original Transformer
proposed by Vaswani et al. [13].

The key innovation of T5 lies in its unified task format. For
every task, both the input and output are treated as text strings.
For instance:
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Fig. 2. GPT architecture: Transformer decoder blocks using masked self-
attention for left-to-right language modeling [2].

Translation: "translate English to French: I love apples.” —
”J’aime les pommes.”

Summarization: “summarize: The article discusses...” —
”The article highlights...”

T5 was pretrained on a large cleaned corpus known as C4
(Colossal Clean Crawled Corpus) using a denoising objective
called Span Corruption, where random spans of text are
replaced by a sentinel token, and the model is trained to re-
construct the missing content. This differs from BERT’s token
masking and allows T5 to learn both language understanding
and generation simultaneously.

T5’s architecture supports multiple model sizes, from T5-
small (60M) to T5-11B (11 billion parameters), enabling its
deployment across tasks of varying complexity. The model is
fine-tuned for downstream tasks by simply prepending task-
specific prefixes (e.g., “summarize:”, “translate:”) to inputs,
eliminating the need for architectural modifications.

T5 achieved state-of-the-art results on benchmarks such as
GLUE, SuperGLUE, SQUAD, and CNN/DailyMail summa-
rization. Its flexibility, scalability, and simplicity have made
it a backbone for many subsequent instruction-tuned models,
including FLAN and UnifiedQA.

Limitations of T5 include its high computational demands
during training and inference, particularly for the larger vari-
ants. Nonetheless, its design philosophy has influenced many
modern NLP models by demonstrating the power of a unified
sequence-to-sequence formulation.

V. MULTILINGUAL NLP — XLM-ROBERTA

In a globally connected world, the ability of NLP models to
understand and generate text across multiple languages is cru-

Fig. 3. T5 architecture: Encoder-decoder model trained with a span corruption
objective using the text-to-text paradigm [3].

cial for inclusivity and scalability. The XLM-RoBERTa (XLM-
R) model, introduced by Conneau et al. [4], is one of the most
successful efforts in this direction. It builds on the masked
language modeling objective of BERT and RoBERTa, while
scaling training to 100 languages using massive multilingual
corpora.

XLM-R is pretrained on a dataset derived from Common-
Crawl, called CC100, which includes cleaned and filtered
content from 100 different languages. Unlike its predecessor
XLM (which used translation language modeling), XLM-
R adopts the masked language modeling (MLM) approach
without requiring parallel corpora. This makes it more scalable
and adaptable to low-resource languages.

The architecture of XLM-R is identical to RoBERTa, con-
sisting of a deep stack of transformer encoder layers with
GELU activation, byte-pair encoding (BPE) tokenization via
SentencePiece, and training without NSP. However, XLM-R is
trained on 2.5 TB of multilingual text, which is significantly
more than multilingual BERT (mBERT), allowing it to learn
richer cross-lingual representations.

Performance-wise, XLM-R significantly outperforms
mBERT and even strong monolingual baselines on cross-
lingual benchmarks like XNLI, MLQA, BUCC, and
XTREME. In zero-shot transfer settings—where the model
is fine-tuned on one language (e.g., English) and tested on
others—it delivers strong generalization capabilities across
typologically diverse languages.

XLM-R has also proven effective in real-world applications,
such as multilingual search, machine translation pretraining,
and cross-lingual sentiment analysis. Its ability to bridge



language gaps without parallel supervision makes it a preferred
model for inclusive and globally deployable NLP systems.

However, like all multilingual models, XLM-R faces the
challenge of language imbalance. High-resource languages
dominate training data, sometimes leading to performance
degradation on low-resource languages. Additionally, token
fragmentation issues in agglutinative or morphologically rich
languages can limit performance.
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Fig. 4. XLM-R multilingual transformer trained with MLM objective across
100 languages using CC100 corpus [4].

VI. EXPLAINABILITY IN NLP — XNLP TECHNIQUES AND
CHALLENGES

As neural networks become increasingly integral to high-
stakes NLP applications—such as healthcare, legal sys-
tems, and finance—the demand for explainability and trans-
parency in their predictions has become critical. Traditional
transformer-based models like BERT, GPT, and T5 are of-
ten referred to as black-box models due to their opacity
in decision-making, despite their remarkable performance.
To bridge this interpretability gap, the field of Explain-
able NLP (XNLP) has emerged, aiming to provide human-
understandable justifications for model predictions.

A comprehensive survey by Mohammadi et al. [5] classifies
XNLP methods into post-hoc and intrinsic approaches. Post-
hoc techniques, such as LIME (Local Interpretable Model-
agnostic Explanations) and SHAP (SHapley Additive exPlana-
tions), generate explanations after model predictions are made.
These are model-agnostic and widely used for classification
tasks. LIME perturbs input tokens to assess their impact
on the output, while SHAP calculates each token’s marginal
contribution using game-theoretic principles.

Intrinsic methods, on the other hand, modify model archi-
tecture or training to produce explanations natively. Exam-
ples include attention-based explanations, rational generation
modules, and interpretable embedding spaces. For instance,
models that highlight input spans during sentiment analysis
or QA offer insights into which parts of the text influenced
the decision. However, attention weights themselves are not
always reliable indicators of importance, as highlighted in
recent studies.

XNLP techniques are evaluated using metrics such as fi-
delity, plausibility, and stability. Fidelity measures how well
the explanation aligns with the model’s behavior, while plau-
sibility assesses human-perceived correctness. High-fidelity
explanations are essential in domains like medicine or criminal
justice, where a wrong justification may have serious conse-
quences.

The survey also emphasizes domain-specific challenges.
In healthcare, explanations must align with clinical logic,
while in finance, explanations must comply with transparency
regulations. In dialogue systems, emotional reasoning must be
interpretable to build trust with users. Furthermore, the paper
identifies a gap in evaluation benchmarks for XNLP—most
existing datasets are not annotated with ground-truth explana-
tions, making standard evaluation difficult.

Recent advances include rationale extraction models, coun-
terfactual reasoning, and explanation generation using large
language models. Some LLMs, such as GPT-4, are now
capable of generating free-text justifications alongside their
predictions, although these are often heuristic and may not
reflect true reasoning paths.

While XNLP is a growing field, it still grapples with several
unresolved issues: scalability to large datasets, explanation
consistency across similar inputs, and potential trade-offs
between model performance and interpretability.

VII. EMOTION AND SENTIMENT ANALYSIS IN NLP

Emotion and sentiment analysis has become a corner-
stone of NLP applications in domains such as social media
monitoring, customer feedback, mental health analysis, and
political opinion mining. These tasks aim to identify under-
lying emotional or sentiment-related cues within text, going
beyond simple polarity classification to recognize fine-grained
emotions like anger, joy, sadness, or surprise.

The EmotionX benchmark proposed by Huang et al. [6]
represents one of the early large-scale efforts to tackle multi-
lingual emotion detection in dialogues. It introduces datasets
in both English and Chinese and provides an evaluation frame-
work for models to classify utterances into emotions such as
”joy,” “neutral,” ’sadness,” and “anger.” The dataset comprises
real human conversational data, which adds complexity due to
colloquialisms, context dependency, and code-switching.

In their baseline experiments, the authors tested several
models including LSTM, CNN, and attention-based RNNs. At-
tention mechanisms significantly improved performance by fo-
cusing on emotionally relevant parts of the sentence. However,
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Fig. 5. Overview of XNLP techniques: post-hoc explanation (LIME, SHAP),
attention-based heatmaps, and intrinsic rationale extraction [5].

context modeling remained a challenge—single utterances
were often ambiguous without prior turns in the dialogue.

Since EmotionX, deep transformer-based models like
BERT, RoBERTa, and DeBERTa have further advanced the
field. These models are often fine-tuned on emotion-labeled
datasets like GoEmotions (by Google), ISEAR, or SEMEVAL
tasks, achieving high F1 scores even on multi-class classi-
fication tasks. Some recent models also incorporate external
affective lexicons and sentiment knowledge graphs to improve
semantic richness.

Despite improvements, emotion recognition still suffers
from key challenges. Contextual ambiguity, sarcasm, irony,
and domain mismatch (e.g., from Twitter vs. movie reviews)
make generalization difficult. Additionally, emotion labels are
inherently subjective—what feels neutral to one user may be
perceived as sad by another. To mitigate this, some researchers
explore multi-annotator agreement metrics and distributional
labeling over hard categories.

New frontiers in this area include multimodal emotion
recognition using video/audio/text data and emotion-aware di-
alogue generation in conversational Al. Emotion classification
is also central to applications like mental health monitoring,
where real-time emotion detection can assist in early diagnosis
and intervention.

VIIl. QUESTION ANSWERING IN NLP — UNIFIEDQA

Question Answering (QA) is a central challenge in NLP,
involving the ability to locate or generate answers from a given
context, often requiring reasoning and language understanding.
QA models must handle a variety of formats, such as ex-
tractive answers from passages, multiple-choice options, and

Fig. 6. EmotionX benchmark setup and architecture comparison: LSTM vs.
Attention-based RNN for emotion detection in dialogues [6].

free-form generative responses. Traditional approaches have
involved task-specific architectures fine-tuned for each QA
format. However, this siloed approach limits generalization
and scalability.

UnifiedQA, introduced by Khashabi et al. [7], addresses
this problem by proposing a single model that works across
multiple QA formats using a unified text-to-text framework.
Built upon the T5 architecture, UnifiedQA reformulates all QA
inputs as text prompts and expects textual outputs. For exam-
ple, both SQUAD-style span extraction and multiple-choice
tasks are treated identically from the model’s perspective:

Input: “question: What is the capital of France? context:
France is a country in Europe. Its capital is Paris.”

Output: "Paris”

The key innovation lies in multi-format training. UnifiedQA
was trained on over 20 different QA datasets, including
SQUAD, TriviaQA, RACE, BoolQ, and Natural Questions,
each with varied task structures. The model learns to un-
derstand the task implicitly from the input prompt structure,
without requiring architectural modifications.

This approach led to strong zero-shot and few-shot gener-
alization, allowing the model to adapt to unseen QA formats
simply by phrasing the prompt correctly. Fine-tuning on just
a few examples of a new format allows it to perform compet-
itively, a hallmark of instruction-aware modeling.

UnifiedQA demonstrates significant improvements over
baseline T5 on several benchmarks, especially in cross-format
transfer scenarios. On OpenBookQA, ARC, and Common-
senseQA, it outperformed task-specific models even without
access to additional task metadata.



The paper also evaluates scalability by experimenting with
different T5 sizes—from T5-base to T5-11B—confirming that
larger models yield better generalization with less training.
Furthermore, the authors highlight the importance of prompt
engineering: subtle differences in input phrasing can drasti-
cally influence performance, an insight that paved the way for
future prompt-based and instruction-tuned models like FLAN-
T5.

Despite its strengths, UnifiedQA is not without limitations.
It is sensitive to prompt formats, requires significant compute
for large-scale inference, and still lacks reasoning depth in
multi-hop or common-sense-based QA scenarios. Nonetheless,
it represents a significant step toward universal QA systems
that can handle the full diversity of human questioning.
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Fig. 7. UnifiedQA architecture and input formatting across multiple QA
datasets using the T5 model [7].

IX. BIOMEDICAL NLP — BIOBERT

The biomedical domain contains vast amounts of unstruc-
tured textual data—from clinical notes and scientific literature
to electronic health records (EHRs). Extracting meaningful
insights from this data requires specialized NLP models
trained to understand domain-specific terminology, syntax, and
structure. To this end, BioBERT, introduced by Lee et al. [8],
represents a landmark in biomedical NLP by adapting the
BERT architecture for medical and biological texts.

BioBERT is initialized with pretrained weights from BERT-
base and then further pretrained on large biomedical corpora,
specifically PubMed abstracts (4.5B words) and PMC full-
text articles (13.5B words). This domain adaptation enables
BioBERT to better capture the semantics of biomedical vocab-
ulary and phraseology compared to generic language models.

The model architecture remains identical to BERT, using
12 transformer encoder layers, 768 hidden units, and 12 self-
attention heads. However, the contextual embeddings pro-
duced after domain-specific pretraining exhibit significantly
improved performance across several biomedical NLP tasks.

In their evaluation, the authors fine-tuned BioBERT on three
major tasks:

Biomedical Named Entity Recognition (NER) — Identifying
names of diseases, genes, proteins, and chemicals in medical
texts.

Relation Extraction (RE) — Detecting associations (e.g.,
drug—disease, protein—protein) within sentence-level context.

Biomedical Question Answering (QA) — Answering clin-
ical and research questions using datasets like BioASQ and
PubMedQA.

BioBERT achieved state-of-the-art performance across all
these benchmarks, outperforming previous methods such as
CNN, BIiLSTM-CRF, and domain-specific embeddings like
word2vec trained on PubMed. For instance, on the NCBI
Disease and BC5CDR datasets for NER, BioBERT showed
a significant boost in F1 scores compared to vanilla BERT.

An important contribution of BioBERT is its demonstration
that continued pretraining on domain-specific text—even with-
out architectural changes—can yield large improvements. This
inspired the development of further models like Clinical BERT,
BlueBERT, and SciBERT, each targeting specific biomedical
subdomains or document types.

However, BioBERT also inherits some limitations of BERT,
including high computational costs and limited generative
capacity. Additionally, the biomedical domain presents chal-
lenges in interpretability and ethical usage, especially when
NLP outputs are used to assist diagnosis or treatment deci-
sions.

Nevertheless, BioBERT represents a pivotal step in integrat-
ing transformer models into the biomedical research workflow,
powering applications from drug discovery to literature min-

ing.

X. PROMPT ENGINEERING AND INSTRUCTION TUNING —
FLAN-T5

The growing capabilities of large language models (LLMs)
such as GPT-3 and T5 have catalyzed the shift from traditional
fine-tuning to prompt-based learning, where models are condi-
tioned to perform tasks by formatting input text as instructions.
Building on this paradigm, FLAN-T5 (Fine-tuned LAnguage
Net) introduced by Chung et al. [9], represents one of the
most impactful efforts in instruction tuning, enhancing model
alignment with user intent through diverse, carefully structured
task instructions.

FLAN-TS5 is based on the T5 encoder-decoder architecture,
which is further trained on a large collection of instruction-
formatted tasks covering domains such as translation, sum-
marization, reasoning, question answering, and classification.
The objective is to teach the model to follow human-like
instructions instead of relying on implicit prompts or fine-
tuning for each individual task.
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(Give the rationale before answering.

Fig. 8. BioBERT architecture and training pipeline: initialized from BERT
and further pretrained on PubMed/PMC data [8].

The key strategy in FLAN-T5 is supervised instruction
tuning, where the model is trained on more than 1,800 tasks
from various benchmarks (e.g., SuperGLUE, MMLU, BIG-
Bench, and Natural Instructions). Each task is framed with
diverse prompts like:

”Translate the following sentence into German: ...”

”Classify the sentiment of this tweet: ...”

”Answer the following question using common sense: ...”

This training regime improves zero-shot and few-shot gen-
eralization across unseen tasks and domains. FLAN-T5 mod-
els—from T5-Base to FLAN-T5-XXL—consistently outper-
form their non-instruction-tuned counterparts on multiple NLP
and reasoning benchmarks, often rivaling or surpassing GPT-3
performance with fewer parameters.

One of the model’s major contributions is its instruction-
following robustness. Unlike earlier models, FLAN-T5 per-
forms well across varied phrasings of the same instruction,
reducing sensitivity to prompt engineering and enhancing user-
friendliness. Furthermore, FLAN-T5 shows strong abilities in
cross-lingual generalization and logical reasoning, demonstrat-
ing broader capabilities than many task-specific models.

FLAN-T5 is also publicly released under a permissive
license, making it widely adopted in research and industry.
It serves as a foundation for Google’s own instruction-tuned
models and has inspired further developments in chain-of-
thought prompting and multi-task training.

However, limitations remain. While FLAN-T5 follows in-
structions better, it can still generate hallucinations or ambigu-
ous answers, particularly in open-domain settings. It also in-
herits the computational intensity of large transformer models,
which may hinder deployment in low-resource environments.

Fig. 9. Instruction tuning in FLAN-T5: training on a wide array of prompts
improves performance and robustness across unseen tasks [9].

XI. MULTIMODAL NLP — FLAMINGO: VISION-LANGUAGE
MODELS FOR FEW-SHOT LEARNING

Modern NLP systems are increasingly expanding beyond
pure text to incorporate multimodal data, such as images, au-
dio, and video. These capabilities are essential for applications
like visual question answering (VQA), caption generation, and
interactive agents. Flamingo, introduced by Alayrac et al. [10],
is a state-of-the-art multimodal transformer designed for few-
shot learning across vision-language tasks.

Flamingo builds upon pretrained language models and vi-
sion encoders, such as Chinchilla for language and Perceiver
Resampler for images. It introduces a gated cross-attention
mechanism, enabling visual inputs to condition the language
model during generation. Unlike earlier multimodal models
that require task-specific fine-tuning, Flamingo is trained in a
few-shot regime and generalizes effectively to unseen tasks by
simply conditioning on a few examples.

The architecture of Flamingo consists of a frozen vision
encoder (e.g., CLIP or ViT), a frozen text decoder (Chinchilla
or GPT-style), and learnable cross-attention modules inserted
at specific layers. These cross-modal modules allow the model
to align and integrate vision and language signals without
retraining the entire network.

Flamingo was evaluated on 16 multimodal benchmarks,
including VQAV2, OK-VQA, Image Captioning, SNLI-VE,
and COCO. It achieved state-of-the-art few-shot performance,
significantly outperforming previous models like CLIP, Vi-
sualBERT, and VinVL. In particular, it demonstrated strong
performance with as few as 4-8 examples per task, making it
both efficient and scalable.



One of Flamingo’s major strengths is task flexibility. It can
perform a variety of vision-language tasks without explicit
retraining, including:

Visual Question Answering: ”What is the boy doing in the
image?”

Image Captioning: ”Describe this scene.”

Visual Reasoning: ”"Which image best matches the given
description?”

The paper also explores instruction-style prompting, where
few-shot examples help condition the model to follow specific
task formats. Flamingo’s success highlights the potential of
frozen backbone models with modular learning layers, which
reduce computational overhead during training and improve
generalization.

Challenges remain in multimodal reasoning, such as han-
dling long-context dependencies across modalities, resolving
ambiguity, and reducing hallucinations in image-grounded
generation. However, Flamingo represents a powerful step
toward unified Al systems that bridge perception and language
understanding.
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Fig. 10. Flamingo model architecture with vision encoder, text decoder, and
gated cross-attention layers enabling few-shot multimodal learning [10].

XIl. ETHICS AND BIAS IN NLP —THE STOCHASTIC

PARROTS DEBATE

As NLP systems scale in complexity, size, and influence,
questions around ethical Al, bias, and responsible develop-
ment have gained urgency. Large language models (LLMs),
trained on web-scale corpora, inevitably inherit and amplify
biases related to gender, race, culture, and socio-economic
status. The landmark paper ”On the Dangers of Stochastic
Parrots: Can Language Models Be Too Big?” by Bender et al.
[12] initiated a critical dialogue within the NLP community

regarding the social and environmental risks of scaling LLMs
without accountability.

The term “Stochastic Parrots” refers to the nature of these
models as statistical systems that generate fluent, coherent text
without understanding, often reproducing harmful stereotypes
or misinformation. The paper argues that models like GPT-3
and its successors, when trained indiscriminately on massive,
uncurated data, risk perpetuating biases and disinformation at
scale.

Key ethical concerns highlighted include:

Bias and Toxicity: LLMs reflect the prejudices of their train-
ing data. This is particularly problematic in applications like
hiring, law enforcement, and education, where such outputs
may cause real-world harm.

Environmental Cost: Training massive models demands
enormous computational resources, resulting in significant
carbon emissions. For example, training a model like GPT-
3 requires thousands of GPU hours, often powered by non-
renewable energy.

Opacity and Accountability: LLMs are notoriously opaque,
making it difficult to explain or trace their outputs, especially
when used in high-stakes decision-making.

Data Consent and Ownership: Web-scraped data may in-
clude copyrighted or private material, raising questions about
informed consent and data governance.

The authors call for transparency, documentation, and stake-
holder engagement in model development. They propose
principles such as data statements, model cards, and risk
assessments to better understand and communicate what a
model does and does not know. Furthermore, they stress the
importance of interdisciplinary collaboration between technol-
ogists, ethicists, and affected communities.

The paper was influential not only academically but also
politically, sparking internal debate within tech companies and

prompting institutions to revise their Al ethics policies. It
underscores the need for value-aligned development, where
technical advancement is balanced with social responsibility.
In today’s era of powerful LLMs like GPT-4, Gemini,
and Claude, the issues raised in this paper remain highly
relevant. Researchers and developers are now integrating bias
mitigation, fairness auditing, and explanation mechanisms as
essential components of the NLP pipeline.

XII.

This review presents a comprehensive exploration of recent
advances in Natural Language Processing (NLP), covering
twelve distinct yet interconnected domains through the lens
of landmark research contributions. From the foundational
transformer architectures such as BERT, GPT, and T5, to
modern innovations in instruction tuning, multilingual general-
ization, multimodal integration, and explainability, we observe
a continuous evolution of NLP capabilities driven by scale,
transfer learning, and architectural ingenuity.

Each topic highlighted in this paper reflects the field’s
trajectory toward more general-purpose, instruction-following,
and domain-adaptable models. UnifiedQA and FLAN-T5

CONCLUSION AND FUTURE DIRECTIONS
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Fig. 11. Ethical concerns surrounding large-scale NLP systems, including
bias, energy use, and lack of transparency [12].

demonstrate the power of formatting tasks as prompts, while
BioBERT and XLM-R showcase the importance of domain
and language-specific training. Flamingo exemplifies the grow-
ing convergence between vision and language, and EmotionX
underscores the demand for emotionally intelligent systems.
In parallel, the emerging subfield of Explainable NLP (XNLP)
and the ethical scrutiny posed by “’Stochastic Parrots” empha-
size the critical need for transparency, fairness, and responsible
Al development.

Despite these advancements, several challenges remain.
Large-scale models often lack interpretability, demand enor-
mous computational resources, and risk encoding societal bi-
ases. Prompt sensitivity, hallucinations, and the lack of domain
robustness still affect performance in practical scenarios. As

No. | Topic / Model Architecture Task Type Key Feature / Innovation Strengths Limitations

1 BERT Encoder (Transformer) Understanding Bidirectional attention with MLM + NSP Strong context modeling, universal base Not generative, slow inference

2 GPT Decoder (Transformer) Generation Autoregressive language modeling Fluent generation, few-shot learning Unidirectional, hallucinations

3 T5 Encoder-Decoder Unified Text-to-Text | Reframes all tasks as text generation High flexibility across tasks Resource intensive

4 XLM-R Encoder (ROBERTa) Multilingual NLP 100-language MLM training with CC100 corpus | Strong zero-shot cross-lingual transfer Token imbalance, low-resource issues

5 XNLP Various Interpretability Post-hoc & intrinsic explanation methods Improves trust & transparency Lacks consistent evaluation standards

6 EmotionX LSTM/Attention Emotion Detection Multilingual emotion classification in dialogues Robust baseline for emotion modeling Ambiguity, context-dependent outputs

7 UnifiedQA Encoder-Decoder (T5) QA (Multi-format) Unified training across diverse QA datasets Task generalization, format-agnostic Prompt sensitivity, reasoning gaps

8 BioBERT Encoder (BERT) Biomedical NLP Domain-specific pretraining on PubMed/PMC Improved NER & QA in medical domain High resource requirements

9 FLAN-T5 Encoder-Decoder Prompt Engineering Instruction-tuned on 1,800+ tasks Follows human-like prompts effectively May still hallucinate or misinterpret

10 | Flamingo Multi-modal Vision + Language Gated cross-attention, few-shot vision-language Flexible multimodal learning Lacks deep visual reasoning

11 EmpatheticDialogues Seq2Seq / BERT Dialogue Systems Emotion-conditioned responses in conversations Improved empathy & relevance Limited domain, hard to scale emotions

12 | Stochastic Parrots N/A (Ethics Paper) Ethical Al Risks of scale, bias, opacity in LLMs Highlights responsible Al development Critique-based; not a technical model
models continue to scale and integrate into real-world systems,
it becomes imperative to balance technical performance with
ethical alignment, ensuring that NLP systems are not only
powerful but also inclusive, transparent, and trustworthy.

Task Specific NLE Algori Gender Bias Future directions in NLP may involve multi-modal ground-

Fralning Set ALF Alganthm Evaluation Test Sel ing, human-in-the-loop learning, federated and privacy-

preserving training, and universal representation frameworks
that adapt seamlessly across languages, tasks, and modalities.
Through this review, we hope to provide researchers, practi-
tioners, and students with a consolidated perspective on the
current landscape and emerging frontiers of NLP—equipping
them to contribute responsibly to the next generation of
language technologies.

ACKNOWLEDGMENT

The author wishes to express gratitude to the faculty mem-
bers at Delhi Skill and Entrepreneurship University (DSEU)
for their guidance and academic support. Special thanks to the
global research community for open access to transformative
NLP models and datasets, which made this survey possible.

CONFLICT OF INTEREST STATEMENT

The author declares no conflict of interest with respect to the
research, authorship, and/or publication of this review paper.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT, 2019, pp. 4171-4186.

[2] T.Brown etal., ”Language models are few-shot learners,” in Advances in
Neural Information Processing Systems, vol. 33, 2020, pp. 1877-1901.

[3] C. Raffel et al., ”Exploring the limits of transfer learning with a unified
text-to-text transformer,” Journal of Machine Learning Research, vol.
21, no. 140, pp. 1-67, 2020.

[4] A. Conneau et al., "Unsupervised cross-lingual representation learning
at scale,” in Proc. ACL, 2020, pp. 8440-8451.

[5] E. Mohammadi, K. Bhargava, and R. Gras, “Explainable natural lan-
guage processing: A comprehensive survey,” ACM Computing Surveys,
vol. 55, no. 11, pp. 1-42, 2023.

[6] H.-H. Huang, C.-Y. Chen, K.-L. Liu, W.-B. Chen, B.-H. Huang, and
H.-H. Chen, ”EmotionX-DLC: Self-attentive BiLSTM for detecting
sequential emotions in dialogues,” in Proc. SocialNLP Workshop, 2018.

[7]1 D. Khashabi et al., ”"UnifiedQA: Crossing format boundaries with a
single QA system,” in Findings of EMNLP, 2020, pp. 1896-1907.



(8]

[0]
[10]

[11]

[12]

[13]

[14]

J. Lee et al., "BioBERT: A pre-trained biomedical language representa-
tion model for biomedical text mining,” Bioinformatics, vol. 36, no. 4,
pp. 1234-1240, 2020.

H. W. Chung et al., ”Scaling instruction-finetuned language models,”
arXiv preprint arXiv:2210.11416, 2022.

J.-B. Alayrac et al., ”Flamingo: A visual language model for few-shot
learning,” in Advances in Neural Information Processing Systems, vol.
35, 2022, pp. 23716-23736.

H. Rashkin, E. Smith, M. Li, and Y. Choi, ”Towards empathetic open-
domain conversation models: A new benchmark and dataset,” in Proc.
ACL, 2019, pp. 5370-5381.

E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, ”On
the dangers of stochastic parrots: Can language models be too big?” in
Proc. FAccT, 2021, pp. 610-623.

A. Vaswani et al., ”Attention is all you need,” in Advances in Neural
Information Processing Systems, vol. 30, 2017, pp. 5998-6008.

Y. Liu et al., "RoBERTa: A robustly optimized BERT pretraining
approach,” arXiv preprint arXiv:1907.11692, 2019.

ABOUT THE AUTHOR

Yash Rathore is currently pursuing
his Diploma in Computer
Engineering at Delhi Skill and
Entrepreneurship University
(DSEU), Delhi. His research interests
include natural language processing,
deep learning, multimodal learning,

and ethlcal AI He is particularly passionate about applying
large language models to real-world problems and exploring
the intersection of Al and human communication.



