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Abstract—Natural Language Processing (NLP) has witnessed 
an unprecedented surge in capabilities and applications, driven 
by advancements in deep learning and transformer-based ar- 
chitectures. This review presents a comprehensive synthesis of 
twelve influential research contributions that span the breadth 
of modern NLP, encompassing foundational models and emerg- 
ing frontiers. We begin by examining core architectures such 
as BERT, GPT, and T5, which have redefined pretraining, 
fine-tuning, and transfer learning paradigms. The survey fur- 
ther explores multilingual representation learning with XLM- 
R, domain-specific adaptations like BioBERT for biomedical 
text, and robust question answering systems exemplified by 
UnifiedQA. Addressing critical needs in trust and usability, we 
analyze explainability methods in NLP and ethical considerations 
around model biases and responsible deployment. Additionally, 
the paper reviews the rise of instruction-tuned and prompt- 
based learning in models like FLAN-T5, sentiment and emo- 
tion recognition from conversational data, empathetic response 
generation, and multimodal learning through vision-language 
models such as Flamingo. Collectively, these works highlight 
the evolution of NLP from task-specific systems to general- 
purpose language understanding frameworks, while underscoring 
challenges related to interpretability, multilingual fairness, and 
real-world reliability. This review aims to guide researchers and 
practitioners toward deeper insights and future directions in 
building inclusive, ethical, and high-performing NLP systems. 

 
Index Terms—Natural Language Processing, Transformers, 

BERT, GPT, T5, Multilingual NLP, Explainability, Sentiment 
Analysis, Prompt Engineering, Multimodal Learning, Biomedical 
Text Mining, NLP Ethics 

I. INTRODUCTION 

Natural Language Processing (NLP) has become an indis- 

pensable branch of artificial intelligence, enabling machines 

to comprehend, interpret, and generate human language at 

scale. The field has rapidly evolved from rule-based systems 

and statistical models to deep neural networks powered by 

transformer architectures. Over the past few years, a series of 

groundbreaking models—such as BERT, GPT, and T5—have 

set new benchmarks in understanding and generating natural 

language. These models not only improved performance across 

a wide array of tasks but also introduced paradigm shifts 

in how NLP problems are framed and solved, particularly 

through transfer learning and pretraining on massive corpora. 

This review synthesizes twelve highly impactful research 

papers that collectively span the most critical domains of 

modern NLP. The selected works represent innovations in lan- 

guage modeling, multilingual representation learning, domain- 

specific adaptations, explainability, ethical AI, and multimodal 

learning. The evolution of autoregressive models like GPT-3 

[2] and unified frameworks such as T5 [3] has demonstrated 

the scalability and generalizability of transformer-based archi- 

tectures. Simultaneously, multilingual models like XLM-R [4] 

address the global applicability of NLP, while domain-specific 

models such as BioBERT [8] cater to high-impact areas like 

healthcare. 

In addition to architectural advancements, the field is in- 

creasingly addressing challenges such as transparency and fair- 

ness. Recent surveys and toolkits have proposed explainable 

NLP (XNLP) frameworks [5] to improve interpretability, while 

ethical critiques have drawn attention to the risks associated 

with data bias and large-scale deployment [12]. Emerging 

trends such as instruction tuning [9], emotion-aware conversa- 

tional agents [6], and vision-language models [10] are pushing 

the boundaries of what language models can understand and 

do. 

By consolidating insights from these twelve works, this 

review aims to provide a structured and critical understanding 

of how modern NLP has evolved and where it is heading. Each 

section of the paper focuses on one major topic, summarizing 

the core contributions of a representative research work and 

highlighting its impact on the field. The paper concludes by 

outlining open challenges and future research directions nec- 

essary to build inclusive, ethical, and adaptable NLP systems 

for the next generation. 

II. BERT – BIDIRECTIONAL ENCODER REPRESENTATIONS 

FROM TRANSFORMERS 

The introduction of BERT (Bidirectional Encoder Repre- 

sentations from Transformers) by Devlin et al. [1] marked 

a breakthrough in Natural Language Processing by enabling 

deep, bidirectional understanding of text. Prior models, includ- 

ing GPT and ELMo, were constrained by unidirectional or 

shallow context processing, whereas BERT leveraged a stack 

of transformer encoders to jointly condition on both left and 

right context in all layers. This structural innovation resulted 

in state-of-the-art performance across a wide array of NLP 

tasks. 

BERT is pretrained using two self-supervised objectives: 

Masked Language Modeling (MLM) and Next Sentence Pre- 

diction (NSP). In MLM, random tokens in the input sequence 

are masked, and the model is trained to predict these tokens 

using the surrounding context. This strategy allows BERT to 

capture semantic and syntactic relationships more effectively 
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than left-to-right models. The NSP objective trains BERT 

to determine whether a given sentence follows another in a 

coherent discourse, which is particularly useful for tasks in- 

volving sentence-level understanding such as natural language 

inference (NLI) and question answering. 

The architecture of BERT is based on the transformer 

encoder introduced by Vaswani et al. [13], comprising multiple 

layers of multi-head self-attention, feed-forward networks, 

layer normalization, and residual connections. The original 

BERT-base model includes 12 transformer layers, 768 hidden 

units, and 12 attention heads, while BERT-large doubles 

these parameters, significantly improving performance but also 

increasing computational costs. 

Fine-tuning is a key aspect of BERT’s versatility. After 

pretraining, task-specific layers are added and the entire model 

is trained end-to-end on datasets such as GLUE, SQuAD, and 

CoLA. This has led to new state-of-the-art benchmarks in 

sentence classification, named entity recognition, and semantic 

similarity. 

Following BERT’s success, several optimized variants 

emerged. RoBERTa removed the NSP objective and trained 

longer with more data, achieving even better performance. Dis- 

tilBERT compressed the model to reduce inference time, and 

ALBERT introduced parameter sharing to reduce redundancy. 

These innovations collectively contributed to the proliferation 

of transformer-based architectures in both academic and in- 

dustrial NLP pipelines. 

Despite its achievements, BERT’s limitations include high 

memory consumption, slow inference, and the absence of gen- 

erative capabilities due to its encoder-only design. Nonethe- 

less, its role in shaping modern NLP architectures remains 

foundational. 

III. GPT – GENERATIVE PRE-TRAINED TRANSFORMERS 

The Generative Pre-trained Transformer (GPT) series, de- 

veloped by OpenAI, introduced a paradigm shift in NLP by 

demonstrating that large-scale, autoregressive language models 

can generalize across tasks through simple prompting. The 

original GPT was released in 2018, followed by GPT-2 in 2019 

and the landmark GPT-3 in 2020, which contains 175 billion 

parameters [2]. These models differ from BERT in architecture 

and training objective—they use only the transformer decoder 

stack and are trained with causal language modeling (CLM) 

to predict the next token in a sequence. 

Unlike BERT’s bidirectional attention, GPT employs unidi- 

rectional (left-to-right) attention, which maintains the natural 

flow of language and facilitates generation tasks such as story 

writing, summarization, and dialogue modeling. The model 

architecture consists of multiple layers of masked multi-head 

self-attention, feed-forward layers, residual connections, and 

layer normalization. 

GPT-3’s most distinctive capability is few-shot and zero- 

shot learning. By providing just a few task examples or de- 

scriptions in the prompt, GPT-3 can perform tasks it has never 

been explicitly trained on, such as translation, summarization, 

or question answering. This behavior is largely attributed to 

 

 

Fig. 1. BERT architecture illustrating stacked bidirectional transformer 
encoders with masked language modeling and next sentence prediction [1]. 

 

 

its massive parameter size and training on a broad dataset 

comprising Common Crawl, WebText, books, and Wikipedia. 

The training objective of GPT follows the standard autore- 

gressive formula: 

P (x) = 
Y 

P (xt|x1, x2, ..., xt−1) (1) 

t=1 

This makes GPT particularly powerful for text generation 

tasks where coherence and fluency over long passages are 

critical. However, GPT models also face criticism for hallu- 

cination, bias reproduction, and lack of transparency in their 

decision-making. 

With the introduction of GPT-4, OpenAI extended the GPT 

family to multimodal inputs, enabling processing of both text 

and image data. GPT-4 also shows improved factuality, safety, 

and alignment, although details about its architecture and 

training remain partially undisclosed. 

IV. T5 – TEXT-TO-TEXT TRANSFER TRANSFORMER 

The Text-to-Text Transfer Transformer (T5), introduced by 

Raffel et al. [3], redefined the formulation of NLP problems 

by casting all tasks—including classification, translation, sum- 

marization, and question answering—into a text-to-text frame- 

work. Unlike BERT, which uses only the encoder, or GPT, 

which relies on the decoder, T5 adopts a full encoder-decoder 

transformer architecture, similar to the original Transformer 

proposed by Vaswani et al. [13]. 

The key innovation of T5 lies in its unified task format. For 

every task, both the input and output are treated as text strings. 

For instance: 
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Fig. 2. GPT architecture: Transformer decoder blocks using masked self- 
attention for left-to-right language modeling [2]. 

 

 

Translation: ”translate English to French: I love apples.” → 

”J’aime les pommes.” 

Summarization: ”summarize: The article discusses...” → 

”The article highlights...” 

T5 was pretrained on a large cleaned corpus known as C4 

(Colossal Clean Crawled Corpus) using a denoising objective 

called Span Corruption, where random spans of text are 

replaced by a sentinel token, and the model is trained to re- 

construct the missing content. This differs from BERT’s token 

masking and allows T5 to learn both language understanding 

and generation simultaneously. 

T5’s architecture supports multiple model sizes, from T5- 

small (60M) to T5-11B (11 billion parameters), enabling its 

deployment across tasks of varying complexity. The model is 

fine-tuned for downstream tasks by simply prepending task- 

specific prefixes (e.g., ”summarize:”, ”translate:”) to inputs, 

eliminating the need for architectural modifications. 

T5 achieved state-of-the-art results on benchmarks such as 

GLUE, SuperGLUE, SQuAD, and CNN/DailyMail summa- 

rization. Its flexibility, scalability, and simplicity have made 

it a backbone for many subsequent instruction-tuned models, 

including FLAN and UnifiedQA. 

Limitations of T5 include its high computational demands 

during training and inference, particularly for the larger vari- 

ants. Nonetheless, its design philosophy has influenced many 

modern NLP models by demonstrating the power of a unified 

sequence-to-sequence formulation. 

V. MULTILINGUAL NLP – XLM-ROBERTA 

In a globally connected world, the ability of NLP models to 

understand and generate text across multiple languages is cru- 

Fig. 3. T5 architecture: Encoder-decoder model trained with a span corruption 
objective using the text-to-text paradigm [3]. 

 

 

cial for inclusivity and scalability. The XLM-RoBERTa (XLM- 

R) model, introduced by Conneau et al. [4], is one of the most 

successful efforts in this direction. It builds on the masked 

language modeling objective of BERT and RoBERTa, while 

scaling training to 100 languages using massive multilingual 

corpora. 

XLM-R is pretrained on a dataset derived from Common- 

Crawl, called CC100, which includes cleaned and filtered 

content from 100 different languages. Unlike its predecessor 

XLM (which used translation language modeling), XLM- 

R adopts the masked language modeling (MLM) approach 

without requiring parallel corpora. This makes it more scalable 

and adaptable to low-resource languages. 

The architecture of XLM-R is identical to RoBERTa, con- 

sisting of a deep stack of transformer encoder layers with 

GELU activation, byte-pair encoding (BPE) tokenization via 

SentencePiece, and training without NSP. However, XLM-R is 

trained on 2.5 TB of multilingual text, which is significantly 

more than multilingual BERT (mBERT), allowing it to learn 

richer cross-lingual representations. 

Performance-wise, XLM-R significantly outperforms 

mBERT and even strong monolingual baselines on cross- 

lingual benchmarks like XNLI, MLQA, BUCC, and 

XTREME. In zero-shot transfer settings—where the model 

is fine-tuned on one language (e.g., English) and tested on 

others—it delivers strong generalization capabilities across 

typologically diverse languages. 

XLM-R has also proven effective in real-world applications, 

such as multilingual search, machine translation pretraining, 

and cross-lingual sentiment analysis. Its ability to bridge 
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language gaps without parallel supervision makes it a preferred 

model for inclusive and globally deployable NLP systems. 

However, like all multilingual models, XLM-R faces the 

challenge of language imbalance. High-resource languages 

dominate training data, sometimes leading to performance 

degradation on low-resource languages. Additionally, token 

fragmentation issues in agglutinative or morphologically rich 

languages can limit performance. 

 

Fig. 4. XLM-R multilingual transformer trained with MLM objective across 
100 languages using CC100 corpus [4]. 

 

 

VI. EXPLAINABILITY IN NLP – XNLP TECHNIQUES AND 

CHALLENGES 

As neural networks become increasingly integral to high- 

stakes NLP applications—such as healthcare, legal sys- 

tems, and finance—the demand for explainability and trans- 

parency in their predictions has become critical. Traditional 

transformer-based models like BERT, GPT, and T5 are of- 

ten referred to as black-box models due to their opacity 

in decision-making, despite their remarkable performance. 

To bridge this interpretability gap, the field of Explain- 

able NLP (XNLP) has emerged, aiming to provide human- 

understandable justifications for model predictions. 

A comprehensive survey by Mohammadi et al. [5] classifies 

XNLP methods into post-hoc and intrinsic approaches. Post- 

hoc techniques, such as LIME (Local Interpretable Model- 

agnostic Explanations) and SHAP (SHapley Additive exPlana- 

tions), generate explanations after model predictions are made. 

These are model-agnostic and widely used for classification 

tasks. LIME perturbs input tokens to assess their impact 

on the output, while SHAP calculates each token’s marginal 

contribution using game-theoretic principles. 

Intrinsic methods, on the other hand, modify model archi- 

tecture or training to produce explanations natively. Exam- 

ples include attention-based explanations, rational generation 

modules, and interpretable embedding spaces. For instance, 

models that highlight input spans during sentiment analysis 

or QA offer insights into which parts of the text influenced 

the decision. However, attention weights themselves are not 

always reliable indicators of importance, as highlighted in 

recent studies. 

XNLP techniques are evaluated using metrics such as fi- 

delity, plausibility, and stability. Fidelity measures how well 

the explanation aligns with the model’s behavior, while plau- 

sibility assesses human-perceived correctness. High-fidelity 

explanations are essential in domains like medicine or criminal 

justice, where a wrong justification may have serious conse- 

quences. 

The survey also emphasizes domain-specific challenges. 

In healthcare, explanations must align with clinical logic, 

while in finance, explanations must comply with transparency 

regulations. In dialogue systems, emotional reasoning must be 

interpretable to build trust with users. Furthermore, the paper 

identifies a gap in evaluation benchmarks for XNLP—most 

existing datasets are not annotated with ground-truth explana- 

tions, making standard evaluation difficult. 

Recent advances include rationale extraction models, coun- 

terfactual reasoning, and explanation generation using large 

language models. Some LLMs, such as GPT-4, are now 

capable of generating free-text justifications alongside their 

predictions, although these are often heuristic and may not 

reflect true reasoning paths. 

While XNLP is a growing field, it still grapples with several 

unresolved issues: scalability to large datasets, explanation 

consistency across similar inputs, and potential trade-offs 

between model performance and interpretability. 

 

VII. EMOTION AND SENTIMENT ANALYSIS IN NLP 

Emotion and sentiment analysis has become a corner- 

stone of NLP applications in domains such as social media 

monitoring, customer feedback, mental health analysis, and 

political opinion mining. These tasks aim to identify under- 

lying emotional or sentiment-related cues within text, going 

beyond simple polarity classification to recognize fine-grained 

emotions like anger, joy, sadness, or surprise. 

The EmotionX benchmark proposed by Huang et al. [6] 

represents one of the early large-scale efforts to tackle multi- 

lingual emotion detection in dialogues. It introduces datasets 

in both English and Chinese and provides an evaluation frame- 

work for models to classify utterances into emotions such as 

”joy,” ”neutral,” ”sadness,” and ”anger.” The dataset comprises 

real human conversational data, which adds complexity due to 

colloquialisms, context dependency, and code-switching. 

In their baseline experiments, the authors tested several 

models including LSTM, CNN, and attention-based RNNs. At- 

tention mechanisms significantly improved performance by fo- 

cusing on emotionally relevant parts of the sentence. However, 



  
 

Fig. 5. Overview of XNLP techniques: post-hoc explanation (LIME, SHAP), 
attention-based heatmaps, and intrinsic rationale extraction [5]. 

 

 

context modeling remained a challenge—single utterances 

were often ambiguous without prior turns in the dialogue. 

Since EmotionX, deep transformer-based models like 

BERT, RoBERTa, and DeBERTa have further advanced the 

field. These models are often fine-tuned on emotion-labeled 

datasets like GoEmotions (by Google), ISEAR, or SEMEVAL 

tasks, achieving high F1 scores even on multi-class classi- 

fication tasks. Some recent models also incorporate external 

affective lexicons and sentiment knowledge graphs to improve 

semantic richness. 

Despite improvements, emotion recognition still suffers 

from key challenges. Contextual ambiguity, sarcasm, irony, 

and domain mismatch (e.g., from Twitter vs. movie reviews) 

make generalization difficult. Additionally, emotion labels are 

inherently subjective—what feels neutral to one user may be 

perceived as sad by another. To mitigate this, some researchers 

explore multi-annotator agreement metrics and distributional 

labeling over hard categories. 

New frontiers in this area include multimodal emotion 

recognition using video/audio/text data and emotion-aware di- 

alogue generation in conversational AI. Emotion classification 

is also central to applications like mental health monitoring, 

where real-time emotion detection can assist in early diagnosis 

and intervention. 

VIII. QUESTION ANSWERING IN NLP – UNIFIEDQA 

Question Answering (QA) is a central challenge in NLP, 

involving the ability to locate or generate answers from a given 

context, often requiring reasoning and language understanding. 

QA models must handle a variety of formats, such as ex- 

tractive answers from passages, multiple-choice options, and 

Fig. 6. EmotionX benchmark setup and architecture comparison: LSTM vs. 
Attention-based RNN for emotion detection in dialogues [6]. 

 

 

free-form generative responses. Traditional approaches have 

involved task-specific architectures fine-tuned for each QA 

format. However, this siloed approach limits generalization 

and scalability. 

UnifiedQA, introduced by Khashabi et al. [7], addresses 

this problem by proposing a single model that works across 

multiple QA formats using a unified text-to-text framework. 

Built upon the T5 architecture, UnifiedQA reformulates all QA 

inputs as text prompts and expects textual outputs. For exam- 

ple, both SQuAD-style span extraction and multiple-choice 

tasks are treated identically from the model’s perspective: 

Input: ”question: What is the capital of France? context: 

France is a country in Europe. Its capital is Paris.” 

Output: ”Paris” 

The key innovation lies in multi-format training. UnifiedQA 

was trained on over 20 different QA datasets, including 

SQuAD, TriviaQA, RACE, BoolQ, and Natural Questions, 

each with varied task structures. The model learns to un- 

derstand the task implicitly from the input prompt structure, 

without requiring architectural modifications. 

This approach led to strong zero-shot and few-shot gener- 

alization, allowing the model to adapt to unseen QA formats 

simply by phrasing the prompt correctly. Fine-tuning on just 

a few examples of a new format allows it to perform compet- 

itively, a hallmark of instruction-aware modeling. 

UnifiedQA demonstrates significant improvements over 

baseline T5 on several benchmarks, especially in cross-format 

transfer scenarios. On OpenBookQA, ARC, and Common- 

senseQA, it outperformed task-specific models even without 

access to additional task metadata. 
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The paper also evaluates scalability by experimenting with 

different T5 sizes—from T5-base to T5-11B—confirming that 

larger models yield better generalization with less training. 

Furthermore, the authors highlight the importance of prompt 

engineering: subtle differences in input phrasing can drasti- 

cally influence performance, an insight that paved the way for 

future prompt-based and instruction-tuned models like FLAN- 

T5. 

Despite its strengths, UnifiedQA is not without limitations. 

It is sensitive to prompt formats, requires significant compute 

for large-scale inference, and still lacks reasoning depth in 

multi-hop or common-sense-based QA scenarios. Nonetheless, 

it represents a significant step toward universal QA systems 

that can handle the full diversity of human questioning. 

 

Fig. 7. UnifiedQA architecture and input formatting across multiple QA 
datasets using the T5 model [7]. 

 

 

IX. BIOMEDICAL NLP – BIOBERT 

The biomedical domain contains vast amounts of unstruc- 

tured textual data—from clinical notes and scientific literature 

to electronic health records (EHRs). Extracting meaningful 

insights from this data requires specialized NLP models 

trained to understand domain-specific terminology, syntax, and 

structure. To this end, BioBERT, introduced by Lee et al. [8], 

represents a landmark in biomedical NLP by adapting the 

BERT architecture for medical and biological texts. 

BioBERT is initialized with pretrained weights from BERT- 

base and then further pretrained on large biomedical corpora, 

specifically PubMed abstracts (4.5B words) and PMC full- 

text articles (13.5B words). This domain adaptation enables 

BioBERT to better capture the semantics of biomedical vocab- 

ulary and phraseology compared to generic language models. 

The model architecture remains identical to BERT, using 

12 transformer encoder layers, 768 hidden units, and 12 self- 

attention heads. However, the contextual embeddings pro- 

duced after domain-specific pretraining exhibit significantly 

improved performance across several biomedical NLP tasks. 

In their evaluation, the authors fine-tuned BioBERT on three 

major tasks: 

Biomedical Named Entity Recognition (NER) – Identifying 

names of diseases, genes, proteins, and chemicals in medical 

texts. 

Relation Extraction (RE) – Detecting associations (e.g., 

drug–disease, protein–protein) within sentence-level context. 

Biomedical Question Answering (QA) – Answering clin- 

ical and research questions using datasets like BioASQ and 

PubMedQA. 

BioBERT achieved state-of-the-art performance across all 

these benchmarks, outperforming previous methods such as 

CNN, BiLSTM-CRF, and domain-specific embeddings like 

word2vec trained on PubMed. For instance, on the NCBI 

Disease and BC5CDR datasets for NER, BioBERT showed 

a significant boost in F1 scores compared to vanilla BERT. 

An important contribution of BioBERT is its demonstration 

that continued pretraining on domain-specific text—even with- 

out architectural changes—can yield large improvements. This 

inspired the development of further models like ClinicalBERT, 

BlueBERT, and SciBERT, each targeting specific biomedical 

subdomains or document types. 

However, BioBERT also inherits some limitations of BERT, 

including high computational costs and limited generative 

capacity. Additionally, the biomedical domain presents chal- 

lenges in interpretability and ethical usage, especially when 

NLP outputs are used to assist diagnosis or treatment deci- 

sions. 

Nevertheless, BioBERT represents a pivotal step in integrat- 

ing transformer models into the biomedical research workflow, 

powering applications from drug discovery to literature min- 

ing. 

X. PROMPT ENGINEERING AND INSTRUCTION TUNING – 

FLAN-T5 

The growing capabilities of large language models (LLMs) 

such as GPT-3 and T5 have catalyzed the shift from traditional 

fine-tuning to prompt-based learning, where models are condi- 

tioned to perform tasks by formatting input text as instructions. 

Building on this paradigm, FLAN-T5 (Fine-tuned LAnguage 

Net) introduced by Chung et al. [9], represents one of the 

most impactful efforts in instruction tuning, enhancing model 

alignment with user intent through diverse, carefully structured 

task instructions. 

FLAN-T5 is based on the T5 encoder-decoder architecture, 

which is further trained on a large collection of instruction- 

formatted tasks covering domains such as translation, sum- 

marization, reasoning, question answering, and classification. 

The objective is to teach the model to follow human-like 

instructions instead of relying on implicit prompts or fine- 

tuning for each individual task. 



  
 

Fig. 8. BioBERT architecture and training pipeline: initialized from BERT 
and further pretrained on PubMed/PMC data [8]. 

 

 

The key strategy in FLAN-T5 is supervised instruction 

tuning, where the model is trained on more than 1,800 tasks 

from various benchmarks (e.g., SuperGLUE, MMLU, BIG- 

Bench, and Natural Instructions). Each task is framed with 

diverse prompts like: 

”Translate the following sentence into German: ...” 

”Classify the sentiment of this tweet: ...” 

”Answer the following question using common sense: ...” 

This training regime improves zero-shot and few-shot gen- 

eralization across unseen tasks and domains. FLAN-T5 mod- 

els—from T5-Base to FLAN-T5-XXL—consistently outper- 

form their non-instruction-tuned counterparts on multiple NLP 

and reasoning benchmarks, often rivaling or surpassing GPT-3 

performance with fewer parameters. 

One of the model’s major contributions is its instruction- 

following robustness. Unlike earlier models, FLAN-T5 per- 

forms well across varied phrasings of the same instruction, 

reducing sensitivity to prompt engineering and enhancing user- 

friendliness. Furthermore, FLAN-T5 shows strong abilities in 

cross-lingual generalization and logical reasoning, demonstrat- 

ing broader capabilities than many task-specific models. 

FLAN-T5 is also publicly released under a permissive 

license, making it widely adopted in research and industry. 

It serves as a foundation for Google’s own instruction-tuned 

models and has inspired further developments in chain-of- 

thought prompting and multi-task training. 

However, limitations remain. While FLAN-T5 follows in- 

structions better, it can still generate hallucinations or ambigu- 

ous answers, particularly in open-domain settings. It also in- 

herits the computational intensity of large transformer models, 

which may hinder deployment in low-resource environments. 

Fig. 9. Instruction tuning in FLAN-T5: training on a wide array of prompts 
improves performance and robustness across unseen tasks [9]. 

 

 

XI. MULTIMODAL NLP – FLAMINGO: VISION-LANGUAGE 

MODELS FOR FEW-SHOT LEARNING 

Modern NLP systems are increasingly expanding beyond 

pure text to incorporate multimodal data, such as images, au- 

dio, and video. These capabilities are essential for applications 

like visual question answering (VQA), caption generation, and 

interactive agents. Flamingo, introduced by Alayrac et al. [10], 

is a state-of-the-art multimodal transformer designed for few- 

shot learning across vision-language tasks. 

Flamingo builds upon pretrained language models and vi- 

sion encoders, such as Chinchilla for language and Perceiver 

Resampler for images. It introduces a gated cross-attention 

mechanism, enabling visual inputs to condition the language 

model during generation. Unlike earlier multimodal models 

that require task-specific fine-tuning, Flamingo is trained in a 

few-shot regime and generalizes effectively to unseen tasks by 

simply conditioning on a few examples. 

The architecture of Flamingo consists of a frozen vision 

encoder (e.g., CLIP or ViT), a frozen text decoder (Chinchilla 

or GPT-style), and learnable cross-attention modules inserted 

at specific layers. These cross-modal modules allow the model 

to align and integrate vision and language signals without 

retraining the entire network. 

Flamingo was evaluated on 16 multimodal benchmarks, 

including VQAv2, OK-VQA, Image Captioning, SNLI-VE, 

and COCO. It achieved state-of-the-art few-shot performance, 

significantly outperforming previous models like CLIP, Vi- 

sualBERT, and VinVL. In particular, it demonstrated strong 

performance with as few as 4–8 examples per task, making it 

both efficient and scalable. 
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figures/flamingo_architecture.png 

One of Flamingo’s major strengths is task flexibility. It can 

perform a variety of vision-language tasks without explicit 

retraining, including: 

Visual Question Answering: ”What is the boy doing in the 

image?” 

Image Captioning: ”Describe this scene.” 

Visual Reasoning: ”Which image best matches the given 

description?” 

The paper also explores instruction-style prompting, where 

few-shot examples help condition the model to follow specific 

task formats. Flamingo’s success highlights the potential of 

frozen backbone models with modular learning layers, which 

reduce computational overhead during training and improve 

generalization. 

Challenges remain in multimodal reasoning, such as han- 

dling long-context dependencies across modalities, resolving 

ambiguity, and reducing hallucinations in image-grounded 

generation. However, Flamingo represents a powerful step 

toward unified AI systems that bridge perception and language 

understanding. 

 

Fig. 10. Flamingo model architecture with vision encoder, text decoder, and 
gated cross-attention layers enabling few-shot multimodal learning [10]. 

 

XII. ETHICS AND BIAS IN NLP – THE STOCHASTIC 

PARROTS DEBATE 

As NLP systems scale in complexity, size, and influence, 

questions around ethical AI, bias, and responsible develop- 

ment have gained urgency. Large language models (LLMs), 

trained on web-scale corpora, inevitably inherit and amplify 

biases related to gender, race, culture, and socio-economic 

status. The landmark paper ”On the Dangers of Stochastic 

Parrots: Can Language Models Be Too Big?” by Bender et al. 

[12] initiated a critical dialogue within the NLP community 

regarding the social and environmental risks of scaling LLMs 

without accountability. 

The term ”Stochastic Parrots” refers to the nature of these 

models as statistical systems that generate fluent, coherent text 

without understanding, often reproducing harmful stereotypes 

or misinformation. The paper argues that models like GPT-3 

and its successors, when trained indiscriminately on massive, 

uncurated data, risk perpetuating biases and disinformation at 

scale. 

Key ethical concerns highlighted include: 

Bias and Toxicity: LLMs reflect the prejudices of their train- 

ing data. This is particularly problematic in applications like 

hiring, law enforcement, and education, where such outputs 

may cause real-world harm. 

Environmental Cost: Training massive models demands 

enormous computational resources, resulting in significant 

carbon emissions. For example, training a model like GPT- 

3 requires thousands of GPU hours, often powered by non- 

renewable energy. 

Opacity and Accountability: LLMs are notoriously opaque, 

making it difficult to explain or trace their outputs, especially 

when used in high-stakes decision-making. 

Data Consent and Ownership: Web-scraped data may in- 

clude copyrighted or private material, raising questions about 

informed consent and data governance. 

The authors call for transparency, documentation, and stake- 

holder engagement in model development. They propose 

principles such as data statements, model cards, and risk 

assessments to better understand and communicate what a 

model does and does not know. Furthermore, they stress the 

importance of interdisciplinary collaboration between technol- 

ogists, ethicists, and affected communities. 

The paper was influential not only academically but also 

politically, sparking internal debate within tech companies and 

prompting institutions to revise their AI ethics policies. It 

underscores the need for value-aligned development, where 

technical advancement is balanced with social responsibility. 

In today’s era of powerful LLMs like GPT-4, Gemini, 

and Claude, the issues raised in this paper remain highly 

relevant. Researchers and developers are now integrating bias 

mitigation, fairness auditing, and explanation mechanisms as 

essential components of the NLP pipeline. 

XIII. CONCLUSION AND FUTURE DIRECTIONS 

This review presents a comprehensive exploration of recent 

advances in Natural Language Processing (NLP), covering 

twelve distinct yet interconnected domains through the lens 

of landmark research contributions. From the foundational 

transformer architectures such as BERT, GPT, and T5, to 

modern innovations in instruction tuning, multilingual general- 

ization, multimodal integration, and explainability, we observe 

a continuous evolution of NLP capabilities driven by scale, 

transfer learning, and architectural ingenuity. 

Each topic highlighted in this paper reflects the field’s 

trajectory toward more general-purpose, instruction-following, 

and domain-adaptable models. UnifiedQA and FLAN-T5 



TABLE I 
COMPARISON OF MAJOR NLP MODELS AND TOPICS COVERED IN THE REVIEW 

 

No. Topic / Model Architecture Task Type Key Feature / Innovation Strengths Limitations 

1 BERT Encoder (Transformer) Understanding Bidirectional attention with MLM + NSP Strong context modeling, universal base Not generative, slow inference 

2 GPT Decoder (Transformer) Generation Autoregressive language modeling Fluent generation, few-shot learning Unidirectional, hallucinations 

3 T5 Encoder-Decoder Unified Text-to-Text Reframes all tasks as text generation High flexibility across tasks Resource intensive 

4 XLM-R Encoder (RoBERTa) Multilingual NLP 100-language MLM training with CC100 corpus Strong zero-shot cross-lingual transfer Token imbalance, low-resource issues 

5 XNLP Various Interpretability Post-hoc & intrinsic explanation methods Improves trust & transparency Lacks consistent evaluation standards 

6 EmotionX LSTM/Attention Emotion Detection Multilingual emotion classification in dialogues Robust baseline for emotion modeling Ambiguity, context-dependent outputs 

7 UnifiedQA Encoder-Decoder (T5) QA (Multi-format) Unified training across diverse QA datasets Task generalization, format-agnostic Prompt sensitivity, reasoning gaps 

8 BioBERT Encoder (BERT) Biomedical NLP Domain-specific pretraining on PubMed/PMC Improved NER & QA in medical domain High resource requirements 

9 FLAN-T5 Encoder-Decoder Prompt Engineering Instruction-tuned on 1,800+ tasks Follows human-like prompts effectively May still hallucinate or misinterpret 

10 Flamingo Multi-modal Vision + Language Gated cross-attention, few-shot vision-language Flexible multimodal learning Lacks deep visual reasoning 

11 EmpatheticDialogues Seq2Seq / BERT Dialogue Systems Emotion-conditioned responses in conversations Improved empathy & relevance Limited domain, hard to scale emotions 

12 Stochastic Parrots N/A (Ethics Paper) Ethical AI Risks of scale, bias, opacity in LLMs Highlights responsible AI development Critique-based; not a technical model 

 
 

 

Fig. 11. Ethical concerns surrounding large-scale NLP systems, including 
bias, energy use, and lack of transparency [12]. 

 

 

demonstrate the power of formatting tasks as prompts, while 

BioBERT and XLM-R showcase the importance of domain 

and language-specific training. Flamingo exemplifies the grow- 

ing convergence between vision and language, and EmotionX 

underscores the demand for emotionally intelligent systems. 

In parallel, the emerging subfield of Explainable NLP (XNLP) 

and the ethical scrutiny posed by ”Stochastic Parrots” empha- 

size the critical need for transparency, fairness, and responsible 

AI development. 

Despite these advancements, several challenges remain. 

Large-scale models often lack interpretability, demand enor- 

mous computational resources, and risk encoding societal bi- 

ases. Prompt sensitivity, hallucinations, and the lack of domain 

robustness still affect performance in practical scenarios. As 

models continue to scale and integrate into real-world systems, 

it becomes imperative to balance technical performance with 

ethical alignment, ensuring that NLP systems are not only 

powerful but also inclusive, transparent, and trustworthy. 

Future directions in NLP may involve multi-modal ground- 

ing, human-in-the-loop learning, federated and privacy- 

preserving training, and universal representation frameworks 

that adapt seamlessly across languages, tasks, and modalities. 

Through this review, we hope to provide researchers, practi- 

tioners, and students with a consolidated perspective on the 

current landscape and emerging frontiers of NLP—equipping 

them to contribute responsibly to the next generation of 

language technologies. 
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